
I , 2 

( T  ]l-~--Ai'Ai [(Pr 2(0) )-g-P] " r~ (0, p) = -- Pr r" (0) 

I t  is  i n t e r e s t i n g  to note tha t  by s e t t i ng  p = 0 in (A4) we obtain 

Y~(0)~- - (  l- Prf'(0)~ ~-~- \ 2  , Ai'Ai(0)(0) _ / . ,  l x ( 3  Prf"(O)6 )T. '  

�9 I T )  
This r e su l t  agrees weli  with the f i r s t  term of the expansion (~ . ) ,  according to which 

3 [Pr[~(0)),Is. v~(o)=(l%)x 6 

(A4) 

Thus, for moderate Pr (i S Pr << ~) Eq. (A4) can be used for all p. 

As p + = (IPl > [I/2pr f"(O)] 2/') we find Y~(O,p)- 4p, while for N << 21p[/Pr f"(O) we 
have Y(q, p) : exp(-- pq). These equations correspond to the case of pure heat conduction. 
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HEAT PROPAGATION BY HEAT CONDUCTION IN ACTIVE LINEAR MEDIA 

L. S. Eleinikova UDC 536.2.O1 

A method to use the matrix A-parameter method [i] to solve linear heat-conduction 
problems in active media is proposed. 

The system of differential equations describing the temperature and heat flux distribu- 
tion in an inhomogeneous heat line (IHL) within which distributed heat and temperature sources 
act has the form [i] 

at _Rlq._i I aq Or = ~ + E, (1) 

Oq _ 0t 
Or gzt --  c - -  q- P. o~ (2) 

Equations (1)-(2) form asystem of so-called telegraph equations in which the effect of 
the internal distributed sources is taken into account. The case when the distributed tem- 
perature sources (E) and the distributed heat sources (P) are independent, i.e., are depen- 
dent on neither the temperature nor the heat flux, but at the same time can be given as func- 
tions of the coordinates or time, has been examined earlier [I]. It is shown there how a 
problem with given initial conditions reduces to a problem with independent heat sources. 
In this paper the case when the distributed sources of both E and P depend linearly on the 
temperature or on the heat flux (or on their time rate of change) is examined. 

Let us consider the following variants: 

la) E = Rl+q(r , ~) are the distributed temperature sources proportional to the heat flux; 

ib) E = ll+3q(r, T)/3T are the distributed temperature sources proportional to the time 
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rate of change of the heat flux; 

2) E = kl+t(r , T) are the distributed temperature sources proportional to the tempera- 
ture; 

3a) P = gl+t(r, z) are the distributed heat sources proportional to the temperature; 

3b) P = c[+~t(r, T)/~r are the distributed heat sources proportional to the time rate 
of change of the temperature; 

4) P = ll+q(r , ~) are the distributed heat sources proportional to the heat flux. 

Here Rl+ll+kl+, gl+Cl+Ll+ are proportlonallty factors. We shall henceforth speak of 
the distributed sources of the type (1-3) and (2-4) and, for brevity , of the heat lines (1-3) 
and (2"4). 

Let us consider the heat lines (1-3). In this case the system of linear differential 
equations (i) and (2) can be represented in the expanded form 

= --Oq Oq 
Ot . --Rtq+Rt+q--lz 0 ~  +I !+  0~ 0x 0T ' (3) Or (Rt -Rz v)q--(lz--ll +) Oq P~*q-- I; Oq 

ot o___Ct Oq at ot (El-- gt +) t--(cz-ct+) o,c = --g~t--c~) o~ (4) Or gz t+gFt - -c t~  +ct" Or 

w h e r e  = RZ - -  R Z + ;  = - -  I S + ;  = g z  - -  g z + ;  = c l - -  c l + .  

When no s o u r c e s  b u t  s i n k s ,  a c t  i n  t h e  body,  t he  p l u s  s i g n  i n  f r o n t  of  t h e  c o e f f i c i e n t s  
with the subscript + is replaced by a minus. The coefficients marked with an asterisk have 
the meaning of effective parameters. As is seen from (3) and (4), taking account of the ac- 
tion of the dependent sources of type (i~3) results only in a diminution of the differential- 
equation coefficients up to obtaining negative values. Therefore, the usual methods used in 
the analysis of passive heat lines [I] are applicable to the computation of active heat lines 
of the type (1-3). For both passive and active heat lines (1-3), inhomogeneous in the gen- 
eral case, the reciprocity principle in the coordinates is satisfied. 

A thermal system with the sources (1-3) can turn out to be unstable. Thus, let us ex- 
amine the system function yl i = q~/~iIta=0 for a homogeneous heat line (HHL) (i-3). Let the 
physical parameters of the body be R*~ c~o, glo. The singularity of the active HHL (i-3) 

Zo' �9 , 

under consideration is that both g~o :and R 1 can have a negative sign. As follows from an 
�9 . t ,  0 , 

analysxs of the system functlon y~ ~., a change in the sign of the parameters gl o to the nega- 
tive results in a shift of its zeroes and poles to the right, and for the R~o to inversion of 
its zeroes and poles from the negative to the positive half plane. The system will be stable 
in the mode under consideration upon compliance with the conditions Rlo> 0 and gl o > 0 or 

>0 and glo < O, but  lg lo l  < 

The stability of other problems for both the HHL and the IHL (i-3) can be investigated 
in an analogous manner. 

~e~t Lines f2-4). In this case the system of two partial differential equations describ- 
ing the process of heat transfer by heat conduction will have the form 

Or =(--Rl(r)q--lz(r)  ) + k ~ ( r ) t ,  (5) 

Oq Ot ) 
Or ( - -gz ( r ) t - - c l ( r ) - -~  + lz+ (r)q" (6) 

After executing a Laplace transformation of the equations presented above with zero initial 
conditions taken into account, we have 

dt __ Z~ (r)q + k +(r) t ,  
dr 

(7) 

dr - -  y. z (r)~-]-  I t+ (r}q, (8) 
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where z/(r) = R/(r) + sl/(r); y/(r) = g/(r) + sc~(r). 

~or a homogeneous heat line (HHL) r~(r) = const and the coefficients z/o, y/o, k~o+, 
llo + are independent of the coordinates and are constants] the following heat conduction 
equation in Laplace transforms is derived on the basis of (5) and (6): 

(klO+ § ~ --(ZloYto--kto+lto+~ = O. (9) dr" 

The differential equation in Laplace transforms for the initlal-heat-conduction func- 
tion yin = q(r, s)/~(r, s), obtained on the basis of (7) and (8), has the form 

Yl (r) + dUin = z! Uin--(k  z o+(r)--I l o+(r))Uin. (10) 

Let us examine the method to obtain the A-parameter matrix [i] for the inhomogeneous 
heat line (IHL) (2-4). It is known that a differential equation formed for the A-parameter 
matrix has the form 

d - -  [A(r)] = -  [A(r)] [X(r)], (11)  dr 
where the matrix [X(r)] can be composed on the basis of the system of differential equations 
(7) and (8) written in the matrix form 

.dr [ - -  yz(r) lt+(r) ' 
i.e., 

=l  x,,(r) x,2(r)] = [kz+(r) -z,(r) l 
[X(r)l ~Xzt(r) X~r)J [_yt(r) ll+(r) j- (13) 

Solving the matrix equation (ii) presented, the A-parameter matrix can be obtained in 
the general case for an inhomogeneous active he.at line (2-4) in analytic form. In the IHL 
(2-4) case when the matrix elements Ix] are constants (independent of the coordinate r), i.e., 

[ k / o +  --Zlo] 
[X]= I---Yi~ tlo+ j , 

the so lu t i on  of the matr ix  d i f f e r e n t i a l  equat ion  i s  w r i t t e n  a t  once: 

where 

Therefore 

[Al=exp{[Flr}, (14) 

f t . 1. Yt o --llo+J 

1 '(klo++ llo§ ) r] ch(u exp [-- 

1 • IA] [CAD B] L vzoexp[_ykzo,+tto+)r]Sh($r) 

1 (klo +§ r ] sh(u ] ' Y t,o+) 

• e x p [ - -  1 k 2-(  lo+ + izo+)r l ch(?r)_l  (lto§ S ~  ] (15) ] 
-(~ +l . 

where y = v~/4(k/o+-- 1lo+) 2 + z/oy/o, from which it follows that AD -- BC =e /:% l%)r. 

We represent the solution (i]) as a power series in s: 

i i (  ) i(r ) ,A]---[A D B] ----E -- [X(r,)ldr,§ 3"'X(rz)]drzoo [X(r,), drt --.0 0 o'l [X(r3)]drs)[X(r2)] dr2 [X(rt)]dr,+... (16, 

On the basis of (16), for an active HHL (2-4) 
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}r3{ } 
A =  1--kzo+r+ r 2 / k  2 - zz.oy, m - -  k~o++Zz~Yzo(lzo,+2kz o+) + 

2! t zo+ - ~ .  ..., 
(17) 

{ }3{ 1 Z.~o(kzo++l>+) + ro vz~ ~ ..., ~ z~176 +Iz ~176 + tL)  B = z z ~ - -  ~ .  . . (18) 

r2 , } r3 
c = vzor- T, {vzo(k~,o++l~o+) + --,[* oV~-+V o(m ++t,o k,o +t: ~1- . . .  (19) 

f I 3 Z - - I  r2 [ l ~ o + ~ - Z z o Y t o , - -  r3 . 

and  f o r  an a c t i v e  i n h o m o g e n e o u s  h e a t  l i n e  IHL ( 2 - 4 )  
r r r t r r t 

A = 1--fkl+(rOdrt+j'l.t'k,+(r=)drz} kl+(ri)dr, + . f{5  zl(r~)dr=} y'(ri)dri . . . . .  
o o o o o 

(2o) 

(21) 

r r ~r t r r t 

B = j'g,:(rt)drt- 5{3'kl +(r2)drg-} z~(rt)dr,--.f {J; z/(rz)drz}//+(ri)dr,+...,  
0 0 0 0 0 

(22) 

r r r; r r, 
C -- I Yi(q)drt--I{ iY" (rz)dr= }kl+(r')dri--t{flt+(rz)drzIYz(ri)dq+'"' 

�9 �9 . �9 . , 

0 0 0 0 0 

(23) 

r r r |  r r z 

D =  1-- S l'+(q)dri+Sl ! +S{SLl+(r=)dr=} I'+(ri)dq . . . . .  (24) 
0 0 O 0 0 

The desired transfer function of the active thermal object [with the sources (2-4)] can 
be written on the basis of the A-parameter matrix for given boundary conditions, its stabil- 
ity can be determined, and the possible stable modes of a distributed gain in temperature or 
in heat flux can also be analyzed. 

Heat lines with the sources (2-4) are irreversible in the coordinate. Any thermal four- 
pole is considered reversible in the coordinate if 

det[A] -- AD -- BC = 1. (25)  

But from the Jacobi identity 

[r [ i l/~et[Al)=---exp 5Sp[Xg)ldr=exp j'(X.(r)+ Xa(r))dr , (26)  
o 0 

it follows that det[A] = i if and only if ~'(Xii(r)+Xm(r~dr=O. 
0 

Consequently, it can be stated that in the general case both the IHL and HHL will he 
irreversible in the coordinate if a distributed heat source of the type (2) and (or) (4) acts 
within them. Heat lines with sources (2-4) will be reversible in the coordinate only in the 

f r 

particular case when the condition [k~+(rOdri+[Iz+(rl)dri=O is satisfied for the IHe (2-4), and 
o o 

klo + + llo + = 0 for the HHL (2-4). 

NOTATION 

r, coordinate; T, time; t, temperature; q, heat flux; o(r), cross-sectional area in the 
heat propagation direction; Rl, linear thermal resistance; cl, linear specific heat; gZ, 
linear heat conduction; and II, linear thermal inertia. 
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